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Interest in the redox properties of natural products has led to the development of various assays for

the detection of antioxidant activities and ROS-scavenging properties. Here, additional modifications

of the 2-deoxy-D-ribose degradation assay are introduced that specifically allow the determination of

interactions of the test compound with the autoxidation of ascorbic acid and the autoxidation of the

test compound itself. To illustrate this, juglone and quercetin were used as examples. The modified

assay systems provide insights into their specific antioxidative and pro-oxidative properties. In

additional, an extensive characterization of the redox properties of their complex with iron is

possible, if iron ions are added in the free form or complexed with EDTA. The juglone-iron complex

proved to be pro-oxidative in a wider range of milieus than the quercetin-iron complex.
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INTRODUCTION

Interest in the redox properties of natural products has stimu-
lated many studies focusing on natural products that prevent the
destructive effects caused by reactive oxygen species (ROS) on
many biomolecules (1). ROS are also involved in controlling the
pathogenesis ofmany degenerative diseases (2,3) andmay activate
redox sensitive transcription factors (4). As a result, the main-
tenance of redox homeostasis is a crucial asset for survival of stress
scenarios, in the tissues of both plants (5) and animals (2).The
maintenance of physiological redox homeostasis is as essential
for a cell as that of osmosis or pH. During evolution, cells have
developed complex interacting regulatorymechanisms that include
enzymes and reducing metabolites that help to maintain the redox
homeostasis (6). Consequently, natural products have been andare
screened for their antioxidant activity and, in this context, espe-
cially for their ROS-scavenging properties. This broad interest has
led to the development of various assays to determine antioxidant
activity (7-10).

The hydroxyl radical (•OH) occupies an exceptional position
among ROS because of its extreme reactivity and oxidative
potential; it attacks even inert compound such as alkanes (11)
which are normally considered to be stable under physiological
conditions. One route to hydroxyl radicals is outlined by the
Fenton reaction (reaction 1) which is catalyzed by transition
metals (e.g., Fe, Cr, Cu, or Mn). These catalysts are regenerated
then in a Haber-Weiss reaction (reaction 2).

Fe2þ þH2O2 f Fe3þ þOH- þ •OH ð1Þ
Fe3þ þO2

•- f Fe2þ þO2 ð2Þ
Gutteridge and co-workers introduced an assay that allowed

the detection of interactions of the test compounds with the

formation of hydroxyl radicals by the Fenton reaction (12-14).
This assay uses 2-deoxy-D-ribose as detection molecule, and it is
utilized in phytochemistry and food chemistry to assess antioxi-
dant properties of various compounds or extracts (10,15-17). 2-
Deoxy-D-ribose is degraded by hydroxyl radicals that are gener-
ated in the reaction mixture by the Fenton reaction. The rate
constant of the reaction is 3.1� 109M-1 s-1 (14). The amount of
the degradation product, malonyldialdehyde (MDA), can be
determined photometrically after a reactionwith 2-thiobarbituric
acid yielding a pink pigment. Benzoic or formic acids, rhodamine
B and other substances were used as substrates to detect hydroxyl
radical attack (18,19); they show, however, no special advantage
compared to 2-deoxy-D-ribose. The originally described reaction
mixture contains hydrogen peroxide, iron(III) ions, ascorbic acid
and 2-deoxy-D-ribose. Iron is added in two forms into the reaction
mixture, either as FeCl3 that can be chelated by tested substances
or in the form of a Fe(III)-EDTA complex. The complex of iron
withEDTAavoids complex formationwith the tested substances,
2-deoxy-D-ribose (13) or ascorbic acid (20), but does not prevent
the participation of the iron in the Fenton reaction. According to
Gutteridge (12, 13), redox active scavengers inhibit efficiently 2-
deoxy-D-ribose degradation by hydroxyl radicals that were
formed in the solution: the iron ions were complexed by EDTA.
In the absence of EDTA, a portion of the iron ions is complexed
by 2-deoxy-D-ribose. The hydroxyl radicals arise close to the 2-
deoxy-D-ribose molecule. Accordingly, compounds with ligand
properties compete for iron ions with the 2-deoxy-D-ribose
molecules and thus decrease 2-deoxy-D-ribose degradation that
is causedby iron-catalyzedhydroxyl radical attack . The reactants
can be dissolved only in water or inorganic buffers, because the
hydroxyl radical reacts with most of the organic solvents and
substances employed for buffer preparations (21). Ascorbic acid
initializes the Fenton reaction by reduction of iron(III) ions. The
kinetics of this iron(III) reduction may be the decisive factor
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(22,23). Thus, if ascorbic acid is omitted in the reaction mixture,
the capability of the test compound itself to reduce iron(III) and
start the Fenton reaction can be also assessed (10).

The aim of this paper is to introduce additional modifications of
the 2-deoxy-D-ribose degradation assay that facilitate even more
detailed insights into the possible reactions of the test compound
than those that are already described in the literature. The main
innovations that these modifications offer are that (i) the omission
of hydrogen peroxide allows determination of interactionswith the
autoxidation of ascorbic acid, and (ii) if ascorbic acid is also left
out, the possible autoxidation of the tested substance itself may
become evident. The quality of the information that may be ob-
tained by the newly introduced modifications of the 2-deoxy-D-
ribose degradation assay are exemplified by juglone and quercetin
(Figure 1). For comparative reasons, the chosen pH is exactly the
same as of the cytoplasm (pH = 7.4).

Juglone (5-hydoxy-1,4-naphthoquinone) is known as a phyto-
toxin and redox cycler (17,24), and quercetin is a flavonoid aglycon
widespread within the plant kingdom and well-known for its
antioxidative and iron chelating properties (25, 26). Reputedly,
quinones are good acceptors of electrons (27) whereas phenols are
donors of electrons (28). Juglone has both a quinone and a phenolic
functional group. Quercetin has five hydroxyl groups and one keto
group. The o-hydroxyl groups of ring B are usually the initial target
of oxidants. Structural features that are required for complex
stabilitywith transitionmetals include the 3-hydroxy-4-keto group-
ing in ring C, the 5-hydroxy-4-keto arrangement of rings A and C,
and the o-hydroxyl groups of ring B (Figure 2) (26, 29). Conse-
quently, the antioxidant activities of flavonoids depend on their
redox properties and chelation of transition metals.

MATERIALS AND METHODS

Chemicals. Juglone, hydrogen peroxide, and 2-deoxy-D-ribose
(deoxyribose) were obtained from Fluka (Buchs, Switzerland). All other

chemicals and organic solvents used were of analytical grade and purchased
from Sigma-Aldrich Inc. (St. Louis, MO). Water had Milli-Q quality.

H2O2/Fe
3þ
/Ascorbic Acid System. Juglone or quercetin was dis-

solved in an aqueous KH2PO4/KOH buffer solution (50 mM, pH 7.4) to
yield final concentrations from 2 to 500 μM; to 125 μL of this solution, 25
μL of a 10.4 mM 2-deoxy-D-ribose solution in the same buffer system and
50 μL of an aqueous solution of FeCl3 (50 μM) were added. In one series,
those 50 μL contained 52 μM EDTA dissolved in buffer, which was
premixed with the aqueous FeCl3 solution (1:1 v/v). In the other series, the
EDTA solution was replaced by the same volume of the buffer. In the first
series, EDTA complexed the iron ions, preventing them from being
chelated by the test compound; in the second series, the iron ions were
complexed by the test compound. To start the Fenton reaction, various
reactants dissolved in the above-mentioned buffer systems or inwaterwere
added: 25 μL of 10.0 mM aqueous solution of H2O2 and 25 μL of 1.0 mM
ascorbic acid in buffer. Standard 1.5 mL sample vials (La-Pha-Pack,
Werner Reifferscheidt GmbH, Langerwehe, Germany) were used as
reaction vials. The mixture was vortexed and incubated at 27 �C for 60
min. Thereafter, 10 μL of 2.5% ethanolic butylated hydroxytoluene
solution (w/v) followed by 250 μL of 1.0% 2-thiobarbituric acid dissolved
in 3% trichloroacetic acid (w/v) was added to each vial to detect
malonyldialdehyde, the decomposition product of 2-deoxy-D-ribose
caused by the attack of hydroxyl radicals. The vials were vortexed and
heated in a water bath at 85 �C for 30 min. The reaction was stopped by
transferring the vials into an ice water bath for 3 min. To extract the
reaction product of MDA and thiobarbituric acid, 600 μL of n-butanol
was added, and themixture was rigorously vortexed. The butanol layers of
the vials, each 350 μL, were pipetted into flat bottomed 96 well plates
(Greiner, Kremsm€unster, Austria) and the absorbance was determined
with a microplate reader (Tecan Infinite M200, M€annedorf, Switzerland)
at 532 nm. Assays were performed in triplicate. Reaction mixtures lacking
the test compound served as positive control (100%MDA). The blank con-
tained the full reaction mixture except 2-deoxy-D-ribose (negative control).

H2O2/Fe
3þ System. This modification was carried out without the

addition of ascorbic acid, which was replaced by the same volume of the
buffer. Scoring was performed after 1 h. The blank contained the full
reaction mixture except 2-deoxy-D-ribose (negative control). The positive
control was the H2O2/Fe

3þ/ascorbic acid system mixture lacking the test
compound (100% MDA).

Fe
3þ
/Ascorbic Acid System.Hydrogen peroxide was replaced by the

same volume of water.Deoxyribose degradation strongly depended on the
diffusion of air oxygen into the liquid. Consequently, scoring was
performed only after 16 h. The blank (negative control) contained the full
reaction mixture without 2-deoxy-D-ribose (0% MDA). The positive
control was the H2O2/Fe

3þ/ascorbic acid system mixture lacking the test
compound (100% MDA).

Fe
3þ

System. This modification of the deoxyribose assay was carried
out without the addition of H2O2 and ascorbic acid, which were replaced by
the same volume of the buffer or water. Scoring was performed after 16 h
(diffusion of air oxygen). The blank contained the full reaction mixture exc-
ept 2-deoxy-D-ribose (negative control). The positive control was the H2O2/
Fe3þ/ascorbic acid systemmixture lacking the test compound (100%MDA).

For all systems, possible interferences of tested compounds with the
MDA detection procedure in the assay systems were checked before the
experiments (8).

Statistical Analyses. Statgraphics Plus 5.0 (Statistical Graphics Corp.,
Rockville, MD) was used to perform analyses of variance (ANOVA) with
Duncan’s multiple range tests at a confidence level of 95%.

RESULTS AND DISCUSSION

All reactions that are presented in the ongoing text are
hypotheses that aim to explain the results which were obtained
from the deoxyribose degradation assay. These reactions, how-
ever, represent only a portion of possible ones.

H2O2/Fe
3þ/Ascorbic Acid System. The Fenton reaction gen-

erates hydroxyl radicals after reduction of iron(III) by ascorbic
acid (21). Juglone and quercetin proved to be strong inhibitors of
2-deoxy-D-ribose degradation in both variants of this experi-
ment, with andwithout addition ofEDTA (Figure 3a,b). Additio-
nally, juglone showed a very weak pro-oxidative effect in the

Figure 1. Chemical structures of juglone (1) and quercetin (2).

Figure 2. Chelates of juglone and quercetin with ions of transition metals.
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concentration 500 μM in the variant without EDTA (Figure 3a).
Juglone inhibited the 2-deoxy-D-ribose degradation. Several inter-
actions are possible: (i) the hydroxyl group can reduce hydroxyl
radical to water by an one electron transfer (Figure 4); (ii) the
quinone part can oxidize hydrogen peroxide to molecular oxygen
and/or ascorbic acid to dehydroascorbic acid by two electron
transfers (Figure 4); (iii) juglone may be reduced to trihydroxy-
naphthalene by two electron transfers, a further reducing agent
that scavenges any ROS by either one or two electron transfers
(Figures 4 and 5). The absence of hydrogen peroxide and ascorbic
acid prevented the initialization ofFenton reaction inboth variants
(with and without EDTA) when the scoring was performed within

one hour. Juglone showed pronounced antioxidative effects by
decreasing the deoxyribose degradation in both systems, either
with or without addition of EDTA. In the latter system, however,
in 500 μM, juglone again increased the concentration of MDA
compared to the concentration of 250 μM. The following chem-
istry is possible: In the concentrations 2-250 μM juglone removes
the iron ions from the competive ligand 2-D-deoxyribose and
concomitantly scavenges arising ROS. Juglone is a 5-hydroxy-
1,4-naphthoquinone, and the 5-hydroxy-4-carbonyl moiety of the
juglone molecule complexes iron ions (Figure 2) (29). Most
flavonoids show the same combination of functional groups that
are well-known for chelation of transition metals (30).

Figure 3. Activities of juglone and quercetin in various systems of the deoxyribose degradation assay, quantified in % malonyldialdehyde, an oxidative
decomposition product of 2-deoxy-D-ribose; bars are means; error bars, standard deviation; N = 3, letters indicate different levels of significance (95%
probability, Duncan’s multiple range test).
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The weak pro-oxidative effect observed (Figure 3a) in the
concentration 500 μM in the variant without addition of EDTA
most probably is caused by the different redox properties of
iron-juglone complex. The reduction of iron(III) in the iron-
juglone complex might proceed more easily compared to the
complex of Fe(III)-EDTA if trihydroxynaphthalene or higher
concentrations of juglone are present (Figure 6). This interpreta-
tion offers a possible explanation for the different behavior of
juglone in the two variants of the assay at the highest concentra-
tion tested, 500 μM. Low solubility of higher concentrations
than that precluded the testing of higher dosages of juglone.

Possible one electron and two electrons reactions of juglone are
shown in Figures 4 and 5.

Quercetin is well-known as an efficient reducing agent and
chelator of transition metals (31). Both characteristics are visible
in the results of the assay: The decrease of the relative MDA
concentrations depends on the quercetin concentrations in both
variants of the assay (Figure 3b) (12,13). Quercetin can reduce not
only the highly reactive hydroxyl radical but also the more stable
hydrogen peroxide to water (Figures 7 and 8). Phenols also form
complexes with iron ions (Figure 2). Scavenging of free radicals and
chelation of iron both contribute to the antioxidant activity of
flavonoids. This assay suggests that the redox properties of
quercetin aremore responsible for the observed antioxidative effect
than the chelation of iron. The protection of deoxyribose against
attack by hydroxyl radicals was more efficient in the variant with
EDTAadded (Figure 3b). Oxidation products of quercetin, such as
phenolic acids, their esters and other derivatives (32) with similar
antioxidant and/or chelation properties, however, could also parti-
cipate in the previously outlined reactions.

H2O2/Fe
3þ System. This assay system explores if the tested

compound can substitute for the function of ascorbic acid and
start the Fenton reaction by reduction of iron(III) (10).Hydrogen
peroxide may also reduce iron(III) ions (reaction 3) and initiate
the Fenton reaction.

H2O2 þFe3þ f Fe2þ þO2
•- þ 2Hþ ð3Þ

Only low concentrations of MDA were observed. Conse-
quently, this pathway is negligible (Figure 3c,d). Superoxide anion
radicals (O2

•-) undergo spontaneous dismutation to hydrogen
peroxide (reaction 4). The speed of this reactionmay be increased
byphenolic complexes of themetals that functionas catalysts (33).

2O2
•- þ 2Hþ f H2O2 þO2 ð4Þ

Phenols may also interact with superoxide anion radicals. The
product, hydrogen peroxide, is further reduced to water
(reactions 5 and 6).

HO-Ar-OHþO2
•- f -O-Ar-O• þH2O2 ð5Þ

HO-Ar-OHþH2O2 f OdArdOþ 2H2O ð6Þ
Juglone demonstrated negligible antioxidant activity in the

variant of the assay without addition of EDTA, especially in the
concentrations 500 and 250 μM (Figure 3c). In the variant with
addition of EDTA, the concentration of 250 μM indicates the
emergence of a weak pro-oxidative effect. Quercetin definitely
had no effects in either variant of this assay (Figure 3d). In
summary, the obtained results suggest that neither juglone nor
quercetin can promote the 2-deoxy-D-ribose degradation in the
presence of hydrogen peroxide.

Fe
3þ
/Ascorbic Acid System. Here, ascorbic acid undergoes

autoxidation in the presence of transition metals and, as a result,
produces ROS (reactions 7 and 8) (20, 34), but compared to the
previously described systems the speed of the whole process is
slower because it depends on the diffusion rate of atmospheric
oxygen into the reaction liquid. The time point for scoring thus
was extended to 16 h.

2Fe3þ þ ascorbic acid f 2Fe2þ þdehydroascorbic acid ð7Þ

Fe2þ þO2 f Fe3þ þO2
•- ð8Þ

If the iron ions form a complex with ascorbic acid;this is the
case if no EDTA is added;the reduction of iron ions and

Figure 4. Selected possible one electron and two electron redox reactions
of phenolic and quinone groups of juglone. AA, ascorbic acid; DAA,
dehydroascorbic acid.

Figure 5. Selected possible one electron redox reactions of quinone and
semiquinone groups of juglone.
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molecular oxygen increases (0 concentrations inFigure 3e,f), and,
thus, moreROS are formed thatmay enter theHaber-Weiss and
Fenton reactions. By contrast, Buettner reported the opposite
phenomenon (20): The iron(III)-EDTA complex increased the
speed of the ascorbic acid autoxidation reaction. This can be
explained by different reaction times;Buettner used 15-30
min;and also a different end point. It is important to pay
attention to the fact that Buettner studied the decrease of ascorbic
acid, not that of 2-deoxy-D-ribose. 2-Deoxy-D-ribose most prob-
ably competes with ascorbic acid as ligand for iron. This affects
the portion of the iron ions that are complexed by the 2-deoxy-D-
ribose molecules (12). If this is the case, then the possibility that
formed hydroxyl radicals directly attack 2-deoxy-D-ribose in-
creases (13).

Juglone boosted the pro-oxidative effect of ascorbic acid in
both variants of the assay. The amplification of the activity was
stronger in the variant without addition of EDTA (Figure 3e).
The effect increased in concentrations 63-125 μM and slightly
decreased in concentrations from 250 to 500 μM. The redox
properties of the iron-juglone complex and the reduction activity

of the hydroxyl group of juglone and the potentially formed
trihydroxynaphthalene contribute most probably to the pro-
oxidative effect that is evident in this system of the assay.
Trihydroxynaphthalene may arise following reduction by ascor-
bic acid, superoxide anion radical or hydrogen peroxide. Juglone
and its reduced derivative, trihydroxynaphthalene, participate in
the redox cycling of iron(III)/iron(II) besides of ascorbic acid
(Figures 4 and 5). This effect was visible in both of the variants
with and without addition of EDTA. These results suggest that
the most important contribution was the more easy reduction of
the iron-juglone complex compared to that of the Fe-EDTA
complex. This effect, however, is not fully visible in the above-
mentioned systems because of the presence of hydrogen peroxide
that may undergo similar reactions from the start of the assay. In
this system, hydrogen peroxide is generated by concomitant
activities of juglone, ascorbic acid and iron ions. By contrast,
this is not the case in the classic system of the 2-deoxy-D-ribose
degradation assay. There exists, however, an assay system that
uses phospholipid liposomes for detection of hydroxyl radi-
cals (34, 35); it uses a similar setup as in this modified system of
the 2-deoxy-D-ribose degradation assay. In the variant without
addition of EDTA, the potential shift in the redox properties
may cause the strong pro-oxidative effects observed in the 63 and
125 μM concentrations where iron might be better available for
Fenton reaction. The decrease of the pro-oxidative effect in the
higher concentrations may be caused by changing concentrations
of reactants and reaction products. This affects the redox poten-
tials of the reactions and alters their speed. Thus, specific pheno-
mena are only apparent at certain concentrations.

Quercetin inhibited the pro-oxidative activity of ascorbic acid
more or less acting as an antioxidant. In contrast to juglone, this

Figure 6. Reduction of the iron(III)-juglone complex by trihydroxynaphthalene or juglone.

Figure 7. Selected possible one electron redox reactions of quercetin.

Figure 8. Selected possible two electron redox reactions of quercetin.
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effect was more apparent in the variant without addition of
EDTA (Figure 3f). The results suggest that quercetin blocked the
degradation of 2-deoxy-D-ribose. It is possible that bothmechan-
isms, scavenging of ROS and chelation of iron ions, contributed
to the observed effect. The results from the variant without
addition of EDTA indicate that the contribution of complexation
of iron ions may be higher; iron-quercetin complexes decrease
the activity of iron ions in the Fenton reaction as their reduction
seems to be more difficult (36). Further studies are required to
explore if quercetin protects the iron ions against reduction by
ascorbic acid by acting as more efficient competitor in their
chelation.

The coupling reactions between semiquinones and monodehy-
droascorbic acid also may influence the activities of both juglone
and quercetin (37). The occurrence of complex parallel reactions
prevents an unambiguous clarification of the detailed mechan-
isms.

Fe3þ System. This system tests the possible autoxidation
potential of the assayed substances. The principle is similar to
the system where ascorbic acid generates ROS, but here the test
compound replaces ascorbic acid (reactions 9-11).

HO-Ar-OHþFe3þ f Fe2þ þ -O-Ar-O• þ 2Hþ ð9Þ

-O-Ar-O• þO2 f O2
•- þOdArdO ð10Þ

Alternatively, the following reaction is also possible:

HO-Ar-OHþ 2Fe3þ f 2Fe2þ þOdArdOþ 2Hþ ð11Þ
Iron(II) ions can reduce molecular oxygen into superoxide

anion radicals (reaction 8). Complex formation between the
tested substance and iron ions plays a key role; in the various
complexes, iron ions possess variable redox properties that affect
their participation in oxidation or reduction reactions (reactions
12 and 13).

HO-Ar-OHþFeIII-complex f FeII-complex

þ -O-Ar-O• þ 2Hþ ð12Þ

FeII-complexþO2 f FeIII-complexþO2
•- ð13Þ

Similar to the last system described, scoring was performed
after 16 h because the system also depends on the diffusion of
molecular oxygen from the air into the reaction mixture.

Juglone showed notable pro-oxidant activity that was more
pronounced in the variant without EDTA addition. The efficient
concentrations were 63-500 μM for the variant without EDTA
addition and 125-500 μM for variant with EDTA addition. The
results suggest that juglone reduced iron(III) to iron(II) ions,
either directly by its hydroxyl group or indirectly by superoxide
anion radicals thatwere formedby reduction ofmolecular oxygen
(Figures 4 and 5). The reduction of molecular oxygen to the
superoxide anion radical and its subsequent dismutation gener-
ates hydrogen peroxide which initiates the Fenton reaction
(Figure 4). The reduction activity of juglone explains the pro-
oxidative effect in both variants of this assay system. The higher
pro-oxidative effect in the variant without addition of EDTA
suggests that iron ions are more easily reduced in the complex
with juglone than in the complex with EDTA.

The pro-oxidative effect of quercetin was more evident in the
variant with addition of EDTA than in the variant without
addition of EDTA (Figure 3h). In the variant without addition
of EDTA, the pro-oxidative effect was only apparent in the lower

concentrations (4-63 μM). No significant effects were shown at
the higher concentrations (125-500 μM). The results suggest that
quercetin affects the degradation of 2-deoxy-D-ribose in this
system assay by chelation of iron ions and strong redox proper-
ties. In the variant without the addition of EDTA, iron was
chelated by quercetin and this prevented the reduction of iron(III)
to iron(II). In the variant with addition of EDTA, quercetin
behaved similarly to juglone. It reduced the iron ions in the
complex with EDTA (Figure 7). Quercetin may also interact with
molecular oxygen by transfer of either one or two electrons
(Figures 7 and 8); this generates hydrogen peroxide. It is suggested
that hydrogen peroxide may arise mainly through the superoxide
anion radical intermediate (28, 38). Superoxide anion radicals
may also reduce iron(III) ions. Reduction of molecular oxygen
and iron(III) started the Fenton reaction in the variant without
the addition of EDTA.

Conclusive Assessment. All modified systems of the 2-deoxy-
D-ribose degradation assay demonstrated that the chosen test
compounds, juglone and quercetin, enter complex redox reac-
tions depending on the presence and absence of other compo-
nents in the assay system. In the author’s view, this set of
assays provides easy and cost-effective characterization of the
potential pro- and antioxidative effects of the test compound in
changing milieus, a highly critical issue in the characterization of
the redox chemistry of a test compound. Electron transfer
reactions determined by Fenton chemistry are highly milieu-
dependent and this especially merits attention in the classification
of antioxidative properties of tested compounds or compound
mixtures.

ABBREVIATION USED

EDTA, ethylenediaminetetraacetic acid; Fe-EDTA, chelate
of EDTA with iron ions; MDA, malonyldialdehyde; ROS,
reactive oxygen species.
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